Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 106: 189-94, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26363564

RESUMO

A total of 98 patients with glioma were treated with BPA-F-mediated boron neutron capture therapy (BNCT) in Finland from 1999 to 2011. Thirty-nine (40%) had undergone surgery for newly diagnosed glioblastoma and 59 (60%) had malignant glioma recurrence after surgery. In this study we applied a closed 3-compartment model based on dynamic (18)F-BPA-PET studies to estimate the BPA-F concentrations in the tumor and the normal brain with time. Altogether 22 patients with recurrent glioma, treated within the context of a clinical trial, were evaluated using their individual measured whole blood (10)B concentrations as an input to the model. The delivered radiation doses to tumor and the normal brain were recalculated based on the modeled (10)B concentrations in the tissues during neutron irradiation. The model predicts from -7% to +29% (average, +11%) change in the average tumor doses as compared with the previously estimated doses, and from 17% to 61% (average, 36%) higher average normal brain doses than previously estimated due to the non-constant tumor-to-blood concentration ratios and considerably higher estimated (10)B concentrations in the brain at the time of neutron irradiation.


Assuntos
Terapia por Captura de Nêutron de Boro , Boro/farmacocinética , Neoplasias Encefálicas/radioterapia , Glioblastoma/radioterapia , Dosagem Radioterapêutica , Finlândia , Humanos
2.
Phys Med Biol ; 60(17): 6685-700, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26270032

RESUMO

In peptide receptor radionuclide therapy (PRRT), voxel-level radiation absorbed dose calculations can be performed using several different methods. Each method has it strengths and weaknesses; however, Monte Carlo (MC) simulation is presently considered the most accurate method at providing absorbed dose distributions. Unfortunately MC simulation is time-consuming and often impractical to carry out in a clinical practice. In this work, a fast semi-Monte Carlo (sMC) absorbed dose calculation method for (177)Lu PRRT dosimetry is presented. The sMC method is based on a local electron absorption assumption and fast photon MC simulations. The sMC method is compared against full MC simulation code built on PENELOPE (vxlPen) using digital phantoms to assess the accuracy of these assumptions.Due to the local electron absorption assumption of sMC, the potential errors in cross-fire dose from electrons and photons emitted by (177)Lu were first evaluated using an ellipsoidal kidney model by comparing vxlPen and sMC. The photon cross-fire dose from background to kidney and kidney to background with varying kidney-to-background activity concentration ratios were calculated. In addition, kidney to kidney photon and electron cross-dose with different kidney to kidney distances were studied. Second, extended cardiac-torso (XCAT) phantoms were created with liver lesions and with realistic activity distributions and tissue densities. The XCAT phantoms were used to simulate SPECT projections and 3D activity distribution images were reconstructed using an OSEM algorithm. Image-based dose rate distributions were calculated using vxlPen and sMC. Total doses and dose rate volume histograms (DrVH) produced by the two methods were compared.The photon cross-fire dose from the kidney increased the background's absorbed dose by 5% or more up to 5.8 cm distance with 20 : 1 kidney to background activity concentration ratio. On the other hand, the photon cross-fire dose from the background to the kidney volume was negligible. The vxlPen results showed that the cross fire dose between two similar kidney volumes relative to the source kidney's self-dose were 0.5% and 0.02% for photon and electrons, respectively, when source and target kidneys were modelled next to each other. The photon cross-dose decreased as function of distance, and electron doses were zero at distances larger than 4 mm. The difference between sMC and vxlPen kidney total doses in the XCAT phantom study was -0.4% while the electron dose DrVHs were identical between the methods. There was a systematic 5% difference in photon doses in soft tissue between the codes due to different simulations parameters. However, the photons produced only 4% of the kidney's total dose, thus the difference was not considered significant for total dose calculations.The comparison studies show that the absorbed doses calculated using the sMC differ only slightly from dedicated MC simulator results, while the dose estimates can be obtained in a fraction of the dedicated simulator's calculation time. Results imply that there is no need for electron MC simulation for (177)Lu absorption calculations with current SPECT systems. However, the photon cross-fire dose should be taken into account in healthy tissues, which have a relatively low uptake especially in cases where there are high uptake volumes are nearby.


Assuntos
Algoritmos , Lutécio/uso terapêutico , Doses de Radiação , Monitoramento de Radiação , Radioimunoterapia/métodos , Compostos Radiofarmacêuticos/uso terapêutico , Radioterapia Assistida por Computador/métodos , Lutécio/administração & dosagem , Compostos Radiofarmacêuticos/administração & dosagem
3.
Appl Radiat Isot ; 88: 134-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24588987

RESUMO

The mixed neutron-photon beam of FiR 1 reactor is used for boron-neutron capture therapy (BNCT) in Finland. A beam model has been defined for patient treatment planning and dosimetric calculations. The neutron beam model has been validated with an activation foil measurements. The photon beam model has not been thoroughly validated against measurements, due to the fact that the beam photon dose rate is low, at most only 2% of the total weighted patient dose at FiR 1. However, improvement of the photon dose detection accuracy is worthwhile, since the beam photon dose is of concern in the beam dosimetry. In this study, we have performed ionization chamber measurements with multiple build-up caps of different thickness to adjust the calculated photon spectrum of a FiR 1 beam model.


Assuntos
Terapia por Captura de Nêutron de Boro/instrumentação , Modelos Estatísticos , Reatores Nucleares/instrumentação , Fótons/uso terapêutico , Radiometria/instrumentação , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Ar , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Radiat Prot Dosimetry ; 132(1): 57-63, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18713782

RESUMO

The estimation of shielding requirement of a new positron emission tomography (PET) facility is essential. Because of penetrating annihilation photons, not only radiation safety in the vicinity of patients should be considered, but also rooms adjacent to uptake and imaging rooms should be taken into account. Before installing a PET/CT camera to nuclear medicine facilities of Helsinki University Central Hospital (HUCH), a typical PET imaging day was simulated using phantoms. Phantoms were filled with 300 +/- 36 MBq of (18)F isotope and dose rates were measured at 12 central locations in the laboratory. In addition to measurements, dose rates were also calculated using guidelines of AAPM Task Group 108. The relationship between the measured and calculated dose rates was found to be good and statistically significant, using Pearson's correlation test. The evaluated monthly doses were compared with personal dosemeter readings. AAPM's report gives practical tools for evaluation of radiation shielding. Calculations can be carried out successfully for existing hospital complexes too. However, calculations should be carried out carefully, because especially doors, windows and partitions can easily cause underestimation of shielding requirements as shown in this work.


Assuntos
Tomografia por Emissão de Pósitrons/normas , Lesões por Radiação/prevenção & controle , Monitoramento de Radiação/métodos , Monitoramento de Radiação/normas , Tomografia Computadorizada por Raios X/normas , Fluordesoxiglucose F18 , Humanos , Modelos Estatísticos , Medicina Nuclear , Imagens de Fantasmas , Compostos Radiofarmacêuticos
5.
Appl Radiat Isot ; 61(5): 799-803, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15308147

RESUMO

Improvements have been made at the FiR 1 BNCT facility to ease the positioning of the patient with a tumor in the head and neck region into a lateral neutron beam. Shoulder recesses were constructed horizontally on both sides of the beam aperture. When shoulder recesses are not needed, they are filled with neutron attenuating filling blocks. MCNP simulations using an anthropomorphic human model BOMAB phantom showed that the main contribution to the increase in the effective dose to the patient's body due to the shoulder recesses was from the neutron dose of the arm. In a position when one arm is inside the shoulder recess, the maximal effective dose of the patient was estimated to be 0.7Sv/h. Dose measurements using the twin ionization chamber technique showed that the neutron dose increased on the sides as predicted by the MCNP model but there was no noticeable change in the gamma doses. When making the recesses into the lithium containing neutron shield material tritium contamination was confined using an underpressurized glove box and machine tools with local exhaust. The shoulder recesses give space for more flexible patient positioning and can be considered as a significant improvement of the Finnish BNCT facility.


Assuntos
Terapia por Captura de Nêutron de Boro/instrumentação , Desenho de Equipamento , Finlândia , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Imagens de Fantasmas , Postura , Planejamento da Radioterapia Assistida por Computador/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...